Student 1 Name:	Date:
Student 2 Name:	Class:

PART 3: BECOME A DESIGN ENGINEER

In Part 3 we will be competing against the other groups and classes to design a custom surface that will hold the most liquid on its surface. As engineers you are being given the task to design your own surface. <u>The objective is to MAXIMIZE the volume while MINIMIZING the total cost.</u>

To accomplish this you have the following options:

1. you can use EITHER a coin or a penny.

Surface	Description	Cost
Penny	Copper penny (heads-up)	\$0.01 each
Coin	Plastic coin	\$0.04 each

2. you can use <u>ONE</u> of the liquids tested.

Liquid	Description	Cost
Water		\$0.001/drop
Salt Water		\$0.002/drop
Soapy Water		\$0.004/drop

3. you use <u>ONE</u> of the following materials (but do not have to)

Surface Treatments	Description	Cost
Hairspray	Single coating, dried. Cost based on area being coated.	\$0.04/mm ²
Sandpaper	Single use of sandpaper. Cost based on area being coated.	\$0.02/mm ²
Spray Paint	Single coating, dried. Cost based on area being coated.	\$0.04/mm ²
Paraffin Wax Paper	Cost based on length (mm) of wax cut used.	\$0.02/mm

Engineering Design Considerations

- Determine the cost for each of the configurations you tested yesterday. This will give you a good idea of the "base cost" before you begin making any modifications to your surface.
- You want the most for your money. Therefore, minimize the value of (\$/mL)
- Notice that your liquid will cost you (\$/drop) but you want to minimize (\$/mL)

Values from Part 1:

Liquid	m _{drop}	V _{drop} (mL)	 (mm)	ρ (g/mL)

Values from Part 2:

	N _{Average}	Film Height (mm)	M _{Liquid} (g)	V _{Liquid} (mL)
Penny w/				
Penny w/				
Penny w/				
Coin w/				
Coin w/				
Coin w/				

Data Collection

• Be sure to record all relevant data for each test (create your own tables and graphs). Your design MUST be reproducible.

<u>Summary</u>

Describe the best design (include: surface, liquid, modification, # drops, volume, cost). Attach all data collection sheets. Be sure to discuss cohesion, adhesion, and surface tension, and how these relate to the goal of the project.